
The Power of Stars 
 
Despite their docile appearance in the night sky, stars are giant-size nuclear reactors that 
pump out enormous amounts of energy. This is most easily seen with our own Sun. Earth, 
except for some continuing geothermal activity at its center, gets all its energy from the 
Sun. And Earth only gets a very, very small part of the Sun’s energy – only that part 
that’s on a general straight-line from the Sun to us. That small percentage of the Sun’s 
total energy output runs this entire planet. 
 
And the Sun isn’t even a big star. It’s slightly in the upper half of its class, generally 
speaking, but there are stars out there – lots of them – that are much, much bigger. And 
these big stars not only produce more energy than our Sun, they produce 
disproportionately more energy. 
 
The Dynamics of the Stellar Engine 
 
I’m not going to get into how stars form, or what happens when they ‘die’ (as they all 
will). I’m going to be discussing what’s going on in a normal-life star and how its energy 
is produced. 
 
Stars are massive. Even our own Sun, in addition to being 100X the diameter of the 
Earth, contains 333,000 times the Earth’s mass. About 73% of this mass is hydrogen, 
which is the fuel used in the nuclear process. 
 
Whenever a large mass – larger that, say, the size of the ex-planet Pluto – is accumulated, 
this mass does its best to form itself into a sphere, because this is the most efficient shape 
for any particular volume, and make itself as small (dense) as possible. These are 
accomplished through gravitational contraction. In the case of Earth, the contraction stops 
when the electron repulsion of atoms and molecules balances the gravitational forces. In 
other words, we just can’t pack it any tighter. 
 
Now, I said I wasn’t going to discuss star formation, but there’s one part I can’t duck. 
When the cloud of gas and dust that would be the Sun went though its initial gravitational 
collapse, about 5 billion years ago, this squeezing created heat, most especially at the 
center of the mass. At some point, the temperature got hot enough to where hydrogen 
could fuse into helium – in other words, the nuclear fire started. 
 
I’m not going to go into detail on this fusion process, but very generally, four hydrogen 
atoms (one proton each) fuse into a single helium atom (two protons, two neutrons). 
However, this new helium atom contains about 0.7% less mass than the four hydrogen 
atoms that created it. This missing mass gets converted into energy by Einstein’s E=mc2. 
 
Once fusion starts, we have an energy source that’s trying to push the mass of the star 
outward, and gravitational forces are trying to contract it. At some point equilibrium is 
established and maintained. If gravity starts to win, this compacts and heats the core, 
which increases fusion activity, which in turn counteracts the gravity. And if fusion starts 



to win, the star and the core expand, reducing fusion, and gravity pulls it back down. This 
continues until the nuclear fuel – hydrogen – is used up to the point where fusion can no 
longer counteract gravity. In the case of the Sun, this will happen about 5 billion years 
from now. 
 
The heat from this nuclear process finds its way to the surface of the Sun, where it’s 
radiated into space in the form of “electromagnetic radiation”, which we frequently, 
though often incorrectly, refer to a “light”. But the Sun radiates more than visible light. 
Electromagnet radiation includes not just visible light, but also light with shorter 
wavelengths that visible-blue (ultra-violet, x-rays, gamma-rays) and with longer 
wavelengths than visible-red (infrared, radio, microwave). 
 
At this point I’m going to have to start quantifying things, so I’ll introduce you to the 
standard (SI) units of measure. 
 
Units of Measure 
 
Length and Area: The SI unit for length is the meter (about one yard), and for area it’s 
the square meter (meter2), which is about a square yard. I do have to note that parts of 
this paper refer to the kilometer, which is 1000 meters. It’s not a unit in the SI system, 
but is a derived unit from the meter. 
 
Energy: The SI unit for energy is the joule, and we can get this into everyday perspec-
tive. The English unit for energy is the foot-pound. One foot-pound is the energy required 
to lift a one-pound object one foot off the ground. If that object is about 74 pounds, the 
energy expended in lifting it one foot off the ground is 74 foot-pounds, which is very 
close to one 100 joules. 
 
Power: This is the rate at which energy is being created or expended, and the SI unit for 
power is the watt. One watt, by definition, is one joule per second (joule/sec). This is the 
same ‘watt’ we use for light bulbs. So, if you lift a 74 pound weight a foot off the floor 
and put it back, and repeat this once a second, you’re supplying 100 watts of power. (In 
putting it back down, gravity is supplying this energy, so it’s also supplying 100 watts. 
The weight itself is moving 2 feet/second, which requires 200 watts, so it adds up.) 
 
Mass: The SI unit for mass – which we’ll be using here and there in this paper, is the 
kilogram  or kg. Yes, it seems out-of-place since it’s ‘derived’ from grams. Still, the 
powers that be, realizing that the kilogram was such a popular unit of measurement, kind 
of caved in and let this ‘kilo’ be admitted to SI. One kilogram is approximately equal to 
2.2 pounds (which is a lot of odd-smelling tobacco). 
 
Temperature: The SI unit of measure for temperature is the Kelvin  (or just K ). It’s not 
“degrees Kelvin” – it’s just “Kelvin”. Since we’ll be talking about stars – which mean 
really high temperatures – it’s a pretty easy conversion to centigrade or Fahrenheit. At 
these values, consider Kelvin and degrees centigrade to be equal. To convert Kelvin to 
degrees Fahrenheit, multiply Kelvin by two if you’re not fussy or by 1.8 if you are. 



 
Scientific Notation: For really big numbers, I’ll use scientific notation. For example, 
instead of writing “1,000,000” for one million, I’ll write “1×106”. I don’t describe 
scientific notation in this paper. You’re on your own for this one. 
 
Luminosity:  This is not an SI unit. For stars, we refer to luminosity as the total power 
output of the star. Since this luminosity is power, its unit of measure is the watt. 
 
Next, I’m going to use these units – and an equation – to calculate the luminosity of the 
Sun. 
 
The Luminosity of the Sun 
 
At this point, we can’t duck using some algebra. I’m going to show how the luminosity of 
a star is calculated, and then relate this to the Sun. Now, I’m not going to ask you to 
actually plug numbers into this equation, but you do need to understand what it means so 
you can relate luminosity to that which contributes to it. 
 
The equation for calculating luminosity is: 
 
L = 4ππππr²σσσσT4 watts 
 
Where: 
L  = the star’s luminosity (in watts) 
ππππ (Pi) you’ll recognize from high school. The value I’ll be using in computations is 
3.14159. 
r  is the radius of the star in meters. 
σσσσ (Sigma – the Stefan-Boltzmann constant) is kind of strange. You can use a rounded 
value of 5.6704 × 10-8. Its units are even weirder: watts/meter²/K4, (watts per square 
meter per Kelvin to the 4th power). But don’t worry about that. It’s just a constant – a 
number. 
T is surface temperature of the star in Kelvins. 
 
There is a subtle but key point here. If you’re interested in the power output of a star, all 
you need know is its radius ‘r’ and its surface temperature ‘T’. All the other things on the 
right side of that equation are constants. 
 
Now, the radius of the Sun is 6.955×108 meters, and it has a surface temperature of 
5778K (these values from Wikipedia). If you want, plug these into the above equation. In 
any case, the Sun’s luminosity is about (depending on your rounding errors) 3.846 × 
1026 watts. 
 
Before leaving this equation, there’s something else I want to show you. We can break up 
the right side of the equation into two parts, thus: 
 
L = [4ππππr²][ σσσσT4] 



 
But 4ππππr² is nothing more than the surface area A=4ππππr² of a sphere or, in this case, the 
surface area of the Sun. So we can also write this equation: 
 
L = AσσσσT4 watts 
 
So, luminosity depends on the surface area, and the temperature of that surface. And you 
should note this: If you double the surface area, you double the luminosity of the star. But 
if you double the temperature, you increase the luminosity by a factor of 16 (since 
24=16). It’s the surface temperature of the star that’s the key contributor to its luminosity. 
 
“Unit-Area” Luminosity 
 
We’re just about done with the equation, but before we leave, let’s look at one final thing. 
 
Luminosity L  is the total luminosity (watts) of the star. If we divide both sides of the 
equation by the star’s surface area A we get unit-area luminosity: 
 
L/A = σσσσT4 watts/meter2 
 
This is the power produced by every square meter of the star. I’ll do the calculation for 
you for the Sun: 
 
L/A = 63,200,984 watts/meter2 for the Sun. 
 
Now, L/A actually has several formal names, one of the most common being “radiant 
flux” and the symbol that I’ve found most commonly used for L/A is j* ., which I find 
kind of confusing since j  usually implies energy. But the most important point is, every 
square meter of the surface of the Sun produces the power of a 63-megawatt nuclear 
power plant. 
 
We are now, at last, done with the equation. 
 
Distance: The Light Year 
 
How far away a star is (from anything) has absolutely nothing to do with its power. But 
in discussing stars other than the Sun, it helps to know how far away the star is, so I just 
can’t duck this topic. 
 
Astronomical distances, beyond our solar system, are measured in “light-years”. Now, 
you’d think the ‘years’ part implies a unit of time, but it doesn’t. The light-year is the 
distance light travels in one year in a vacuum. It’s abbreviated “LY”, or alternatively 
“ly”, and equals approximately 6 trillion miles, or 10 trillion kilometers. (One trillion = 
1×1012). 
 



By comparison, our Sun is “only” 93 million miles, or 150 million kilometers. This, by 
comparison, is about equal to 8.5 light-seconds. 
 
Now “real” astronomers have an alternate unit of measure for distance, called the 
“parsec”, abbreviated pc. I’m not going into detail, rhyme, reason, or math, but one 
parsec equals approximately 3.26 light-years (or, 1 pc = 3.26 ly). We mortals almost 
always use light-years. 
 
Let’s Take a Break 
 
We’ve talked about how the star’s nuclear engine works, and the forces that keep its size 
what it is. We’ve looked at the scientific units of measure, and related them to everyday-
life quantities. And we’ve looked at the Sun, and what the pertinent solar measurements 
are. 
 
The problem is – these numbers are so big! 
 
For example, I told you the radius of the sun is 6.955×108 meters. Now, if there was a 
typo here, and I mistakenly told you the radius was 6.955×109 meters, would you notice 
the difference? Would it be obvious? Can you picture that kind of distance? 
 
Probably not. So, when I introduce new stars to you – bigger than the Sun – using this 
kind of measurement would do you no good at all. We need a new kind of measurement 
that you can relate to. 
 
And we have something – the Sun itself. This is something you see every day, that you 
can relate to. So, we’ll take advantage of that and use it as our new unit of measurement. 
 
Using the Sun as a Baseline Measurement 
 
First, we need a new symbol – “☉☉☉☉” – to represent the Sun, and here’s the notation we’ll 
use for our new baseline. 
 

R☉☉☉☉ refers to the radius of the Sun. Thus 78R☉☉☉☉ reads as “78 solar radii” (which you can, 

of course, calculate to the meter if you want). 1R☉ = 6.955×108 meters. 
 

M☉☉☉☉ is used for the mass of the Sun. 10M☉☉☉☉ means “ten solar masses”. 1M☉ = 
2×1030 kilograms, approximately. 
 

L☉☉☉☉ is for luminosity. 100L☉☉☉☉ means “100 times as luminous as the Sun”. 1L☉ = 3.846 × 
1026 watts. 
 

T☉☉☉☉ refers to the surface temperature “T” of the Sun and is not commonly quoted in star 
catalogs. This is because, although this number is big, it’s still manageable as-is. 



However, I’m going to use it here because it will save you some calculator time. 

1T☉ = 5778K. Note the ‘K’ stands for Kelvin and not for ‘thousands’. 
 
Now, I certainly didn’t invent this clever way of putting the characteristics of stars into a 
perspective relative to the Sun. Using the Sun itself as a unit of measurement has been 
used by astronomers and star catalogs for a long time. 
 
Before we look at and compare some stars, you probably already know you can look up 
the data on the internet. Because we’re using “Solar” units, there’s another equation you 
might want to know: 
 

L☉☉☉☉ = R☉☉☉☉
2 • T☉☉☉☉

4  
 
This says, “The solar luminosity of a star is its solar radius, squared, times the solar 
surface temperature, raised to the fourth power.” 
 
Now be careful! If you actually want to use this equation, the “T” value is solar surface 
temperature – yet, almost all star data you’ll see is the star’s actual surface temperature, 
and this value won’t work in this equation. You will probably have to do your own 
conversion by dividing the actual value given by 5778, which is the Sun’s surface 
temperature. If you do that, you’ll fine. 
 
Now let’s take a look at some of our stellar neighbors. 
 
Proxima Centauri 
 
At only 4.3 light-years away, this star is closest to us (excluding, of course, the Sun). 
Despite this distinction, it’s pretty much a wimp. 
 

R☉ = 0.145; T☉ = 0.526; L☉ = 0.0017 
 
Why is its luminosity only 0.2% that of the Sun? Well, it’s radius on only 15% the Sun 
(not much of a surface area), and worse, its temperature is only about half. Remember 
that surface temperature – being raised to the fourth power – is a major contributor to 
luminosity. 
 
Sirius 
 
Sirius is also a relativity close star (8.6 light years), and it’s pretty big, and it’s bright. 
 

R☉ = 1.1711; T☉ = 1.72; L☉ = 25.4 
 
At first glance, this doesn’t seem to make sense. It’s less than twice the Sun’s radius, and 
its surface temperature is less than twice the Sun’s – but it’s 25 times as luminous! How 
can this be? You have to remember radii are squared, and surface temps are raised to the 



fourth power. A star that has twice the Sun’s radius and twice the Sun’s temp would 

equate out to 22 • 24 = 4 • 16 = 64 times as luminous. The R☉ and T☉ values may go up 
slowly, but luminosity does not! 
 
Here’s the reason – as the radius increases, that just that much more mass squeezing 
down on the nuclear core. To keep the star in balance – to keep it from collapsing – the 
nuclear activity has to step up its pace, generating a lot more heat. (And, by the way, 
using up its nuclear fuel at a much-increased rate.) 
 
Vega 
 
This my very favorite star. It’s not as bright as Sirius, but that’s only because it’s farther 
away at 25.3 light years. 
 

R☉ = 2.26; T☉ = 1.66; L☉ = 37.0 
 
There’s a curiosity here. Do you see it? Vega is significantly larger than Sirius – yet its 
surface temperature is actually less! This is because, even though our luminosity 
calculations work perfectly for a specific star, it generally doesn’t work to take these 
values as predictive of other stars. All stars are not created equal, and the method by 
which they set up their nuclear reactors differs. This is not pure mathematics. 
 
Summary 
 
At this point, you should have a pretty good idea of how powerful stars are, what makes 
them that powerful, and how to use and interpret star data that you can find on the 
Internet. I hope this paper was as much fun for you to read as it was for me to write. 
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